Algebra II Curriculum Guide Tier 1 & 2

Unit 3: Exponential and Logarithmic Relationships February 1 – April 12

ORANGE PUBLIC SCHOOLS 2018-2019 OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF MATHEMATICS

Algebra II Unit 3 **Contents**

Unit Overview	2
Common Core State Standards	
Essential Learning Goals	5
Calendar	8
Assessment Framework	11
Scope and Sequence	
Supplemental Lessons	23
Ideal Math Block	
Sample Lesson Plan (Agile Mind)	
Multiple Representations	
PARCC Practice	41

Unit 3: Rational Functions and Equations

Overview

This course uses Agile Mind as its primary resource, which can be accessed at the following URL:

www.orange.agilemind.com

Each unit consists of 1-3 topics. Within each topic, there are "Exploring" lessons with accompanying activity sheets, practice, and assessments. The curriculum guide provides an analysis of teach topic, detailing the standards, objectives, skills, and concepts to be covered. In addition, it will provide suggestions for pacing, sequence, and emphasis of the content provided.

Essential Questions

- How do you identify an arithmetic series and a geometric series?
- How do you write a function rule for arithmetic series and geometric series?
- What is an exponential function?
- What are the key characteristics of the parent graph of the parent graph of an exponential function?
- How do you use transformation to graph exponential function?
- > How are exponential growth/decay used to solve real world problems?
- What is a logarithmic function?
- What are the characteristics of the parent graph of a logarithmic function?
- How do you use transformations to sketch graphs of logarithmic functions?
- How do you evaluate logarithmic functions?
- How do you solve exponential equations?
- How do you solve logarithmic equations?

Enduring Understandings

- In an arithmetic series, each value in the series differs from its predecessor by the same amount and in geometric series, the ratio of each term to its predecessor is a constant.
- > In arithmetic series the function rule is linear and in a geometric series the
- function rule is exponential
- > All arithmetic and geometric sequences can be expressed recursively and explicitly.
- > Exponential function is expressed in the form of $f(x) = ab^x$, where b is the constant multiplier and greater than 1, a is the initial value and x is the exponent.
- > Exponential value shows rapid growth or rapid decay
- > Parent graph of the exponential function has a domain of $(-\infty, \infty)$ and range of $(0, \infty)$, no extrema or symmetry, has an y intercept of (0,1) and the function is increasing.
- > Exponential growth model are used mostly for population growth and compound interest.
- Exponential Decay model are used for half-life of chemical compound and also for population that is decreasing.
- > Logarithmic function is the inverse of exponential function and has the form of $log_b y = x$, where b is the base and greater than 1, y is the argument and x is the exponent.
- > In order to evaluate logarithmic function you need to find inverse.
- > In order to solve exponential and logarithmic equation you need to need find inverse.

Common Core State Standards

- 1) A.SSE.4 : Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.
- 2) A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- F.IF.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1.
- 4) F.BF.1: Write a function that describes a relationship between two quantities.
 a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
- 5) **F.BF.2**: Write Arithmetic and Geometric sequence both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
- 6) F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
- 7) **F.IF.1**: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of is the graph of the equation y = f(x)
- 8) **F.IF.2**: Use function notation. Evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- **9) F.IF.5** *Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
- 10) A-CED A.2: equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- 11) F-BF.5: (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents
- 12) A.SSE.3c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.151/12)^{12t} ≈ 1.012^{12t} to reveal the approximate equivalent monthly interest rate if the annual rate is 15%
- 13) F-IF B.4: Interpret functions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
- 14) F-IF B.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

F-BF.3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

- 15) F-IF.7e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude
- 16) **F-IF.8b**: Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them as representing exponential growth or decay
- 17) F-LE A.1.c: Distinguish between situations that can be modeled with linear functions and with exponential functions. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
- 18) F-LE A.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
- 19) F-LE A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
- 20) F-LE A.4: Construct and compare linear, quadratic, and exponential models and solve problems
 4.For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology
- 21) F-LE A5. Interpret the parameters in a[n]-linear or exponential function in terms of a context
- 22) A-CED. A.1: Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- 23) A.RE.D.11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x)and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Major Content Supporting Content Additional Content Parts of standard not contained in this unit Algebra I Content

Algebra II Unit 3 Unit 3: Sequence and series, exponential function, Logarithmic function(35 Days)

- Arithmetic and geometric sequences and series
- Exponential functions
- Logarithmic functions
- Using Logarithms to solve equations and inequalities
- Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Big Rock CCSS	Related Topic	Lesson Objective	Notes
			Notes
F.IF.3 : Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	Arithmetic sequence and series	 Lesson 1.1 Recognize arithmetic sequences Identify the common difference. Recognize geometric sequences and identify the common ratio 	
F.IF.3 F.BF.1: Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from a context F.BF.2: Write Arithmetic and Geometric sequence both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Geometric sequence and series	 Lesson 1.2 Recognize that sequences are functions with integer domains. Use function notation to write recursive rule for an arithmetic sequence Use the explicit expression to find a future term in a sequence Use the concept of sequence to solve real life problem 	
F.IF.3, F.BF.1, F.BF.2 F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).		 Lesson 2.1 Write the function for Geometric sequence Lesson 2.2 Use the geometric sequence concept to solve real life problem 	
A.SSE.4 : Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. Clarification: Students will not have to derive the formula in PARCC but they will have to use it		 Lesson 2.3 Derive the Geometric series Use Geometric Series to solve problems Note: Derive the formula for the series with students before using it. 	
F.LE.2 : Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	Exponential Functions	Lesson 3.1A (F.LE.2, A.SSE.1, F.IF.8b) Using the concept of Geometric Sequence SWBAT • Construct an exponential function and use it to solve problems	

Algebra II Unit 3	
 A.SSE.1 Interpret expressions that represent a quantity in terms of its context.* F.IF.8b: Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)12^t, y = (1.2)^t/10, and classify them as representing exponential growth or decay. F.IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* 	 Interpret parts of expressions in terms of its context (growth/decay factor and initial amount) Identify exponential growth /decay from the context Identify exponential growth and decay from the function and graph 3.1b (F.LE.2, F.IF.4, F.LE.5) Using graphs, function and table SWBAT Identify appropriate values for growth/decay factor. Interpret the graph and expression in terms of context Identify and Interpret the domain range and end behavior of the exponential function Lesson 3.2a (N.RN.2, A.SSE.3c) Transform Exponential Functions using properties of exponents Rewrite expressions using properties of exponents. i.e Using the properties of exponents, rewrite exponential functions based on the structure of expression(NO context)
Interpret the parameters in a linear or exponential function in terms of a context. N. RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $(1.15^{1/12})^{12t} \approx$ 1.012^{12t} to reveal the approximate equivalent monthly interest ate if the annual rate is 15%.	 Lesson 3.2b (A.SSE.3c) Transform Exponential Functions using properties of exponents I.e. Using the properties of exponents, rewrite exponential functions based on the context For example: Convert annual interest rate quarterly, monthly And use it to solve problem half life(Refer to PARCC 2016 question 18)

Algebra II Unit 3		
F-BF.5: (+) Understand the inverse		Lesson 4.1 (<mark>F-LE.4,</mark> F.BF.5)
relationship between exponents and	Logarithmic	Use the concept of inverse relations
logarithms and use this relationship to	Expressions/Function	SWBAT
solve problems involving logarithms and		 understand logarithmic function is
exponents		the inverse of exponential function
F-LE A.4: For exponential models,		and has the form of $log_b y = x$,
express as a logarithm the solution		where b is the base and greater than
to $ab^{ct} = d$ where a, c , and d are numbers		1, y is the argument and x is the
and the base <i>b</i> is 2, 10, or <i>e</i> ; evaluate the		exponent
logarithm using technology.		Evaluate logarithmic function using
		technology
		Lesson4.2 (<mark>F.LE.4</mark>)
		Apply the properties of exponents to
		derive log sum and log difference
		property and use these two
		properties to solve problems
		Develop log exponentially property
		and use it to solve problem
		Lesson 4.3 (<mark>F.LE.4</mark>)
		Develop log change base property
		And use it to solve problem
		Strategically use properties of log to
		solve problems.

Calendar

February 2019						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2
}	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
	Winter Break No SCHOOL					
24	25	26	27	28		

	March 2019					
Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17						23
24	25	26	27	28	29	30
31						

	April 2019					
Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	6	17	18	19	20
21			24	25	26	27
28	29	29				

Assessment Framework

Assessment	Assignment Type	Grading	Source	Estimated in-class time	When?
Diagnostic Assessment Unit 3 Diagnostic	Test	Traditional (zero weight)	Curriculum Dept. created – see Dropbox	< ½ block	Beginning of unit
Benchmark 1 Assessment	Test	Mostly Online graded Some questions need rubrics	Edulastic	Yes	End of MP 3
Teacher Created Assessments	Test	Traditional	Teacher Created	1 block	In between topics
Performance Task Unit 4 Performance Task1	Authentic Assessment	Rubric	Topic constructed response (also see Dropbox)	½ block	In topic 8
Performance Task Unit 4 Performance Task2	Authentic Assessment	Rubric	Topic constructed response (also see Dropbox)	½ block	In topic 9
Quizzes	Quiz	Rubric or Traditional	Teacher created or "Practice" in Agile Minds	< ½ block	Varies (must have 3 quizzes per MP)

Algebra II Unit 3 Scope and Sequence

	Overview					
Topic	Name	Agile Mind "Blocks"*	Suggesting Pacing			
1	Arithmetic and Geometric Sequence and Series	4	5 Days			
12	Exponential Functions	7	10 days with the			
			supplements			
13	Logarithmic Function	8	8 Days			
14	Using Logarithmic to solve equations	6	5 Days			

Diagnostic Assessment	½ day
Benchmark Assessment for MP3	1 Day
Teacher created assessment	2 days
Performance Task 1	½ day
Performance Task 2	½ day
Review	1 day
Quizes	1 to 2 days
Total	33.5 days

*1 Agile Mind Block = 45 minutes

Topic 1: Arithmetic and Geometric series and sequences

Topic Objectives (Note: these are not in 3-part or SMART objective format)

- 1. Recognize arithmetic sequences and identify the common difference.
- 2. Recognize geometric sequences and identify the common ratio.
- 3. Recognize that sequences are functions with integer domains.
- 4. Find explicit terms and sums for arithmetic and geometric sequences.
- 5. Determine convergence and divergence of infinite series
- 6. Learn the conditions for convergence of infinite geometric series
- 7. Use explicit formulas to find the sum of an infinite geometric series.

Focused Mathematical Practices

- MP 2: Reason abstractly and quantitatively
- MP 3: Construct viable arguments and critique the reasoning of others
- MP 5: Use appropriate tools strategically
- MP 6: Attend to precision
- MP 7: Look for and make use of structure
- MP 8: Express regularity in repeated reasoning

Vocabulary

Arithmetic sequence, common difference, geometric sequence, common ratio, recursive definition, arithmetic series, geometric series, indices, sigma, finite series, infinite series, partial sums, convergent, and divergent.

Fluency

- ✓ Graphing equations
- ✓ Using function notation
- ✓ Solving Literal equations (cx + a = d)
- ✓ Identifying rate of change from tables, graphs and equations

Suggested Topic Structure and Pacing

Block	Objective(s) covered	Agile Mind "Blocks" (see Professional Support for further lesson details)	МР	Additional Notes
1	1,2 and part of 4	Block 1 Block 2	2,3, 5, 8	Sequence and series were introduced to students in Algebra I _Topic 3_explore_function notation from page 7 – 10. Same example of congruent triangles was used
2-3	3,4	Block 3 Block 4 Block 5	2, 4, 5, 8	Students will be introduced to summation notation for the first time. You need to spend extra time on having student practice with sigma notation.
4	1,2,3,4	Block 6 Block 7	5, 4, 7, 8	Block 7 : students completing one of the constructed responses; this is optional/flexible.

Algebra II Unit 3	Concepts	Skills	Material/Resourc
CCSS	What students will know	What students will be able to do	e
between quantities; graph equations on coordinate axes with labels and scales.	 Block 1: Review Function definition, different types of function, Domain and range, patterns, rate of change, slope intercept form of an equation, point slope form of an equation, and perimeter of any shapes Block 1: New Sequence and term. Relating terms to its previous term using function notation Definition of series as the sum of terms of a sequence Recursive form and it's limitation Formula for arithmetic sequence 	 Block 1 Review Evaluate functions Identify rate of change from graphs, tables and equation, Write slope intercept of an equation from graph and table. Block 1: New Identifying arithmetic sequence through the common difference Identify geometric sequence through common ratio Write arithmetic sequence 	Agile Mind Topic 1 * Overview * Exploring "Arithmetic sequence and series" P 1-7 Suggested assignment: SAS 1 Q4a-e SAS 2 Q4a-d and 7
F.IF.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, $f(n+1) =f(n) + f(n-1) for n \ge 1.F.BF.1: Write afunction that describesa relationship betweentwo quantities.Determine an explicitexpression, a recursiveprocess, or steps forcalculation from acontext.F.BF.2: WriteArithmetic andGeometric sequenceboth recursively andwith an explicitformula, use them tomodel situations, andtranslate between thetwo forms.$	 Block 2 : Review Exponential equation, percent ratios, arithmetic sequence, subscript notations, expressions and functions with exponents Block 2: New Continue to explore arithmetic sequence Sigma notation as the sum of terms Definition of geometric sequence. formula for geometric series Block 3 : Review Percent, plotting points, geometric series, evaluating expressions with exponents Block 3 : New Concept of limits, concept of infinite series, solving problems with infinite series, concept of convergence and divergence of infinite series 	 Block 2 : Review Write exponential equations Solve problems with percent, evaluate functions with exponents Block 2: New Continue to write arithmetic sequence rules Derive the formula for arithmetic sequence Use Sigma notation as the sum of terms Complete the arithmetic sequence from a table Derive the formula for geometric series Block 3 : Review Solving problems with Percent. plotting points, Formula for geometric series, Evaluating expressions with exponents Block 3 : New solving problems with infinite series, 	Agile Mind Topic *Exploring "Arithmetic sequence and series" P 8-12 *Exploring "Geometry sequence and series" *Exploring "Infinite series" More Practice: P1-13 SAS 2: Q12a-b SAS 3:Q6a-c
F.LE.2: Construct linear and exponential	Block 4:	 Identifying convergence and divergence of infinite series 	

Algebra II Unit 3			
functions, including	Review the concept and skill to	Block 4:	
arithmetic and	complete Guided Practice and	Review the concept and skill to	Agile Mind
geometric sequences,	Constructed Response	complete Guided Practice and	Topic 1
given a graph, a		Constructed Response	*Guide
description of a			Practice
relationship, or two			*Constructed
input-output pairs			Response
(include reading these			(one-to-one
from a table).			computer
			needed)
			More Practice
			P14-17

Topic 12: Exponential functions

Topic Objectives (Note: these are not in 3-part or SMART objective format)

- 1. Formulate exponential relationships written in recursive notation
- 2. Derive the formula for compound interest.
- 3. Calculate compound interest yearly, monthly, weekly, daily
- 4. Transform exponential function

Focused Mathematical Practices

- MP 2: Reason abstractly and quantitatively
- MP4: Model with mathematics
- MP 5: Use appropriate tools strategically
- MP 6: Attend to precision
- MP7: Look for and make sense of structure

Vocabulary

Exponential relationship, recursive notation, compound interest Fluency

- Exponential function
- Inverse function
- Domain and Range

		Sugg	ested Topic Structure	and Pacing
day	Objective(s) covered	Agile Mind "Blocks" (see Professional Support for further lesson details)	MP	Additional Notes
Day 1	1, 2, 3	Block 3	2,4,7	Review writing exponential function from table/graphs during "do now" Skip "overview" and Explore "Fit the Model" Explore: "e" page 1 - 6 Note: Derivation of e is not an algebra II Concept
Day 2	4	Block 5	2, 4, 7	Explore: "Transforming exponential function" pages 1 - 8

CCSS	Concepts What students will know	Skills What students will be able to do	Material/Resource
 F-LE A.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). F-IF.8b: Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^{12t}, y = (1.2)^{t/10,} and classify them as representing exponential growth or decay A.SSE.3c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.15^{1/12})^{12t} ≈ 1.012^{12t} to reveal the approximate equivalent monthly interest rate if the annual rate is 15% 	 Day 1 Review Definition of exponential function Recursive model for exponential function Concept of percent New Definition of compound interest Developing formula for compound interest with different frequencies 	 Day 1 Review Writing exponential function Evaluating problems with precents New Find compound interest with different frequencies 	Day 1 Agile Mind Topic 12 P 1 - 4 * Exploring "e" P 1 - 6 Suggested assignment: More practice p1-6 SAS 3 Q3 and 12
 F-BF B.3 Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for 	 Day 2 (concept) Review Exponential functions Transformation New Concept of transformation be used for exponential function just like any other functions 	 Day 2 (skills)Review Transformation with any function New Transformation of exponential functions 	Day 2 (Material) Agile Mind Topic 12 * Exploring * "Transforming exponential function" pages 1 - 8 Suggested assignment: SAS 4 Q14 – 17

Topic 13: Logarithmic function

Topic Objectives (Note: these are not in 3-part or SMART objective format)

- 1. Develop an understanding of the inverse relationship between exponential and logarithmic functions and convert back and forth between exponential and logarithmic functions.
- 2. Identify domain and range of exponential and logarithmic function with context and without context
- 3. Apply the prior knowledge of transformation to transform logarithmic functions
- 4. Apply properties of exponents to derive log sum and log difference property
- 5. Develop log exponential property
- 6. Define the term common logarithm and also develop the change of base formula

Focused Mathematical Practices

- MP 2: Reason abstractly and quantitatively
- MP4: Model with mathematics
- MP7: Look for and make sense of structure

Vocabulary: Rational Equations, Extraneous solutions Fluency

- Exponential functions
- Properties of exponents
- Domain and range of a function
- Transformations of functions
- Inverse functions

		Sug	gested Topi	c Structure and Pacing
Day	Objective(s) covered	Agile Mind "Blocks" (see Professional Support for further lesson details)	МР	Additional Notes
1	1	Block 1	4, 7	Overview: Page 1 – 4 Explore: Basics of Logarithms" Page 1 -4
2	2 and 3	Block 2		Explore: "Basics of Logarithms" Pages 5 – 14
3	4 & 5	Block 3 and 4		Explore: "Properties of Logarithm" Page 1 - 10
4	6	Block 5 and 6		Explore: "Natural log and change of base" Page 1 - 8

CCSS	Concepts What students will know	Skills What students will be able to do	Material/Resource
 F-BF.5: (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents 	 Day1 (Concept) Review: Concept of inverse relations Exponential function New The term Log is used to write the inverse of the exponential function 	 Day 1 (Skills) Review Writing exponential function New Convert exponential relationship with logarithmic relationship 	Overview: Page 1 – 4 *Explore: "Basics of Logarithms" Page 1 -4 Suggested assignment: SAS 2 Q7a-c, 8a-c, and 9
 F-IF B.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of personhours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. F-BF B.3 Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them 	 Day 2 (Concept) Review: Definition Domain and range of any function Transformation New Parent logarithmic function 	Day 2 (Skills) Review • Finding domain and range of any function New • Finding domain and range of logarithmic function • Transformation of logarithmic function	*Explore: "Basics of Logarithms" Page 5-14 Suggested assignment: SAS 2 Q24-26, 27a-b, and 28 More practice p1-6

Algebra II Unit 3			
F-LE A.4: For exponential models, express as a logarithm the solution to <i>ab</i> ^{ct} = <i>d</i> where <i>a</i> , <i>c</i> , and <i>d</i> are numbers and the base <i>b</i> is 2, 10, or <i>e</i> ; evaluate the logarithm using technology.	 Day 3 (Concept) Review: Properties of exponents New Use the concept of properties of exponents to derive the Properties of Logarithms 	 Day 3 (Skills) Review Apply properties of logarithm New Use properties of logarithm to re-write logarithmic expressions 	*Explore: "Properties of logarithms" Page 1 - 10 Suggested assignment: SAS 3 Q6, 9, and 10a-c, and 15 More practice p7-12
F-LE A.4: For exponential models, express as a logarithm the solution to <i>ab</i> ^{ct} = <i>d</i> where <i>a</i> , <i>c</i> , and <i>d</i> are numbers and the base <i>b</i> is 2, 10, or <i>e</i> ; evaluate the logarithm using technology.	 Day 3 (Concept) Review: Parent function of the logarithmic function New Definition of natural log Base 10 	 Day 3 (Skills) Review Log exponent property Evaluating with logs New Evaluating with natural log and base 10 	*Explore: "Properties of logarithm" Page 1 - 10 Suggested assignment: SAS 4 Q2, 7a-d, and 8

Topic 14: Using logarithms to solve equations and inequality

Topic Objectives (Note: these are not in 3-part or SMART objective format)

After completing the topic square root functions and equations, students will be able to

- 1. Use tables and graphs to solve exponential equations
- 2. Solve exponential equations analytically/Algebraically

Focused Mathematical Practices

- MP 4: Model with mathematics
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary

Quadratic formula, Imaginary numbers, complex numbers, discriminant, real roots and complex roots

Fluency

- Multiple solution strategies (tabular, graphical, analytic)
- Exponential and logarithmic functions

	Suggested Topic Structure and Pacing							
Day	Objective(s) covered	Agile Mind "Blocks" (see Professional Spport for further lesson details)		MP		Additional Notes		
1	1	Block 1		4, 7	Explori	Overview Exploring " Tables and Graphs" Page 1 – 6		
2	3	Block 2			Explorin page 1	g " Analytic Techniques" – 8		
2		Block 4				ucted Response"		
CCSS Co What stud		o ncepts dents will	know	Skills What students will be able to do	Material/Resource			

 A.RE.D.11. Explain why the x- coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. 	 Day1 (Concept) Review Multiple representations(tables and graphs) Exponential functions New Exponential equations 	 Day 1 (Skills) Review Using multiple representations to represent linear and quadratic functions New Solving exponential equations using graphs and tables 	Day 1 (Material) Agile Mind Topic 10 * Overview Pgs. 1 -3 * Exploring "Tables and graphs" Pgs. 1-6 SAS 2: Q2, 5, 6, 7
 F-LE A.4: For exponential models, express as a logarithm the solution to <i>ab^{ct}</i> = <i>d</i> where <i>a</i>, <i>c</i>, and <i>d</i> are numbers and the base <i>b</i> is 2, 10, or <i>e</i>; evaluate the logarithm using technology. A.RE.D.11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. 	 Day 2 (Concept) Review: Systems of linear equations Properties of logarithms New: Understand that solution of a logarithmic equation can be in the same manner as another other equations 	 Day 2 (Skills) Review Solving systems of linear equations by substitution New Solving exponential equations analytically 	Day 2 (Material) Agile Mind Topic 10 * Exploring "Analytic techniques" P 1 – 8 Suggested assignment: SAS 3 Q4, 11a-c, 12a-c, and 13a-c

Supplemental Lessons

Lesson 3.1a

CCSS A.SSE.3: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

CCSS N.RN.2: Rewrite expressions involving radicals and rational exponents using the properties of exponents.

SMP: MP7

Evidence statement: (A.SSE.B)

Use the structure of polynomial, rational, or exponential expression to rewrite it, in a case where two or more rewriting steps are required.

* Tasks do not have context.

Lesson objectives:

* Rewrite expressions using properties of exponents

Task1:

Part A:

Do you think the following statements are true or false? Explain your reasoning. Talk to a partner.

 $2^{2x} = 4^x$ $4^{2x} = 16^x$ $3^{3x} = 9^x$ $(\sqrt[4]{5})^x = 5^{x/4}$

Part B:

Which equations ae true for all values of x?

Select all that apply and showing your work and to justify the answer(s) that you select.

a. $3^{2-x} = 3^2 - 3^x$

b. $3^{x+2} = 9(3^x)$

c. $(3^{x})^{2} = (3^{2})^{x}$

d. $9^{x+2} = 3^{2x+4}$

e. $27^{x} = (3^{x})^{3}$

f. $(\sqrt{5})(\sqrt[3]{5}) = 5^{\frac{5}{6}}$

Part C: Consider the original expression $3^x - 3^{x+2}$

Rewrite this expression as $a \cdot 3^x$

Guided Practice:

- 1. Solve each problem for x
 - 1) $4^x = 4^2$
 - 2) $4^x = 2^b$
 - 3) $32^{\frac{x}{3}} = 8^{x-12}$

2. For m>0, the expression $\frac{2(\sqrt{m})^2}{\sqrt[4]{m}}$ can be rewritten in the form 2m^a, where "a" is a fraction. What is the value of a?

3. In the equation $(5^{\frac{1}{2}})(5^{\frac{2}{3}})^4 = 5^x$, what is the value of x?

Algebra II Unit 3 Independent Practice:

1. An expression is given

 $\frac{(3x)}{(3x)^{\frac{2}{3}}}$

If x > 0, which of the expression listed is equivalent to the expression given? Select all that

apply.

a. $\frac{1}{3x}$ b. $\frac{1}{\sqrt{3x}}$ c. $\frac{1}{3\sqrt{x}}$ d. $(3x)^{1/2}$ e. $(3x)^{-1/2}$

2.

$$f(x) = rac{(x^{-2})^3}{\left(x^{rac{1}{4}}
ight)^8}$$

If f(x) can be rewritten as x^a , what is the value of a?

3. Rewrite the expression $\sqrt[3]{x^2}$ in exponential form.

4. Rewrite the expression $9\sqrt[5]{27}$ as a power of 3.

5. Which of the following is equivalent to $a^{\frac{1}{2}}b^{\frac{3}{4}}$?

a. $\sqrt{ab^3}$

- b. $\sqrt{a^2b^3}$
- c. ∜*ab*³
- d. $\sqrt[4]{a^2b^3}$

Enrichment

A company that manufactures memory chips or digital cameras uses the formula

C= $3\sqrt{n}$ ($40\sqrt[6]{n} + 9\sqrt[4]{n}$) to determine the cost, c, in dollars, o producing n chips. This formula can be written as c = $120\sqrt[3]{n^a} + 27\sqrt[4]{n^b}$, where a and b are constants. What as the values of a and b?

Algebra II Unit 3 Lesson 3.1 b

CCSS: A.SSE.3c: Use the properties of exponents to transform expressions or exponential functions. For example the expression 1.15t can be rewritten as $(1.15^{1/12})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%

Evidence statement:

*Tasks have a real-world context.

*The equivalent form must reveal something about the real-world context.

*Tasks require students to make the connection between the equivalent forms of the expression. SMP: MP4, MP7

Task: 1.2b (CCSS: A.SSE.3c)

A bank provides a yearly compound interest proposal for student-saving account by using the formula

f(t) = P(1.02)^t (P: the initial money deposited; t: # of years)

Eli wants to find a formula which compounds each month but will have the same balance by the end of each year in his account as using the bank yearly compound interest formula. He opened an account and deposited \$500 in the account. He created the formula

g(m) = 500(b)^m (m: # of months)

Eli thinks g(12) = f(1). What does that mean?

Part A: Which of the following can be the value of b for monthly compound formula?

(a.) b=1.02 (b.) $b=1.02^{12}$ (c.) $b=1.02^{1/12}$ (d.) $b=\frac{1.02}{12}$

Show your work to support the answer that you chose from above.

Part B: Which of the following expression can be used for Eli's formula g(m) ?

(a.) $g(m) = 500(1.02)^{12m}$ (b) $g(m) = 500(\frac{1.02}{12})^m$ (c) $g(m) = 500(1.02)^m$ (d) $g(m) = 500(1.02)^{m/12}$

Show your work to support the answer that you chose from above.

Part C: Does the formula that you chose from Part B work for any year? Select a year to test your formula.

Part D: Based on the bank's formula derive a quarterly compound interest formula, k(q), for deposing \$500 in a student saving account? (q: number of quarter years)

Guided Practice:

Question 1:

- An analyst studying the population of a town determines that the population can be modeled by the formula $f(t)=120,000(1.015)^t$, where f(t) represents the population after t years.
- A city council member makes this claim:
- "Based on the formula, after 1 year the population will have increased by 1,800. Since 2,800 divided by 12 is 150, we can use the fact that the population increased by 150 people per month to predict the future population of the town".
- Part A: Explain why the city council member's claim is or is not a valid way to predict the population.

Part B: Modify the initial given formula such that it represents the predicted population by month.

Part C: What is the population after 50 months?

Question 2:

The amount of a certain element that remains after t hours can be determined using the expression $3(0.6)^{\frac{1}{25}}$

Which of the following expression can be used to determine the element that remains after **n munities?**

(a) $3(0.6)^{60n/25}$ (b) $3(0.6)^{25n}$ (c) $3(0.6)^{n/25}$ (d) $3(0.6)^{n/60 \cdot 25}$

Show your work to support your answer.

Independent Practice:

 A city offered a program that provided incentives for residents who purchased energy-efficient appliances. During a certain year, participation in the program increased exponentially by 25 percent. What was the monthly rate of increase, expressed as a percent? Round your answer to one decimal place.

2. A bank pays depositors a 2% interest rate compounded semiannually. L P represents an initial deposit and let t represent the number of years that the deposit is in the bank. The expression P($1 + \frac{0.02}{2}$)^{2t} can be used to determine the account balance after t years. Which expression accurately reflects the annual interest rate?

(a) $P(1.01)^t$ (b) $P(1.21)^t$ (c) $P(1.0201)^t$ (d) $P(1.0404)^t$

Show your work to support your answer.

3. The population, in thousands, of a certain city can be modeled by the function

 $P(t) = 320(0.96)^{0.5t}$, where *t* is the number of years since 2000.

Part A: What was the population of the city in the year 2000?

Part B: Describe the rate of change of the city's population per year.

Enrichment material:

- A scientist has a sample of bacteria that initially contains 10 million microbes. He observes the sample and finds that the number of bacterial microbes doubles every 20 minutes.
- Part A: Write an exponential function that represents M, the total number of bacterial microbes in millions, as a function of t, the number of minutes the sample has been observed.

Part B: Determine how much time, to the nearest minute, will pass until there are 67 million bacterial microbes.

The following outline is the department approved ideal math block for grades 9-12.

- 1) Do Now (7-10 min)
 - a. Serves as review from last class' or of prerequisite material
 - b. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 2) Task/Launch (10 15 min)
 - a. Designed to introduce the lesson
 - b. Uses concrete or pictorial examples
 - c. Attempts to bridge the gap between grade level deficits and rigorous, on grade level content
 - d. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 3) Mini-Lesson (15-20 min)
 - a. Design varies based on content
 - b. May include an investigative approach, direct instruction approach, whole class discussion led approach, etc.
 - c. Includes CFU's
 - d. Anticipates misconceptions and addresses common mistakes
- 4) Class Activity (25-30 min)
 - a. Design varies based on content
 - b. May include partner work, group work/project, experiments, investigations, game based activities, etc.
- 5) Independent Practice (7-10 min)
 - a. Provides students an opportunity to work/think independently

6) Closure (5-10 min)

- a. Connects lesson/activities to big ideas
- b. Allows students to reflect and summarize what they have learned
- c. May occur after the activity or independent practice depending on the content and objective
- 7) DOL (5 min)
 - a. Exit slip

MTSS MODEL

Whole Group Instruction	50 min	Mathematical Content or Language Routine Anchor Task: Anticipate, Monitor, Select, Sequence, Connect		TOOLS Manipul RESOU Agile M	atives RCES
Rotation Stations (Student Notebooks & Chromebooks Needed)	1-2X 25 min	STATION 1:STATION 2:Focus on currentFocus on Student NeedGrade Level ContentFocus on Student NeedSTUDENT EXPLORATION*TECH STATIONIndependent or groups of 2-3IndependentEmphasis on MP's 3, 6TOOLS/RESOURCEAnd MP's 1 & 4 (ProblemTOOLS/RESOURCESSolving and Application)Fluency PracticeTOOLS/RESOURCESAgile MindMath JournalsStation		ES	TEACHER STATION: Focus on Grade Level Content; heavily scaffolded to connect deficiencies TARGETED INSTRUCTION 4 – 5 Students TOOLS/ RESOURCES Agile Homework Manipulatives
	5 min	INSTRUCTION Exit Ticket (Demonstration of Stud TOOLS/RESOURCES Notebooks or Exit Ticket Slips	ent Thinking)		

Algebra II Unit 3 Sample Lesson Plan (Agile Mind)

Lesson	Topic 12 Rational Functions Exploring "e"	Days	1					
Objective	By studying a pattern in the table SWBAT	CCSS	F-LE A.2					
	1. Derive the formula for compound interest.		F-IF.8b					
	2. Calculate compound interest yearly, monthly,		A.SSE.3c					
	weekly, daily							
Learning			1.					
activities/strategi	es Materials needed: Computer with projection device, gra	aphing calc	ulator					
	Fluency Practice : (5 minutes) If the sales tax in your city	/ is 7.0%. ar	nd an item costs \$144					
	before tax, how much tax would you pay on that item?		· · · · · · · · · · · · · · · · · · ·					
	Do Now (5 minutes):							
	Red raised fire ants to study the population growth. Du	ring the firs	t week, he started with 20					
	fire ants. The table shows his collections							
	Weeks Fire ants							
	0 20							
		4 320 Write function relationships for the Fire ants with respect to the number of weeks.						
	Ask students to show the process from 0m weeks for every week. Discuss the pattern. Ask							
	students what kind of function is it? And how do you know?							
	Starter/Launch (5 minutes):							
	• Ask students think of any real life situation where exponential function can be applied							
	(growth or decay) Introduce today's objective							
	mini Lesson (20 minutes):							
	• Set up the scenario of Rachel's gift of \$1000 from her grandmother on page 1 of							
	the <i>Exploring</i> " <i>C</i> ."							
	• Ask students "What would be the difference in depositing the \$1000 into a savings account							
	that pays 12% interest once per year and one that pays 1% interest every month?" Give							
	students a minute or so to think about it on their own then share their thought with a partner.							
	 Ask students to find the amount of money in saving after 1 year for 1% interest every month (Most students might do the requiring magnetic like magnet) and fundaming "a" 							
	 month. (Most students might do the recursive process just like page 2 of Exploring "e" Ask students to write the formula for recursive process by completing the puzzle on 							
	 Ask students to write the formula for recursive SAS 3 question # 2 	process by	completing the puzzle on					
	 Ask students to work in air to answer the follow 	ving questic	on					
	What is a way to directly calculate the a after 12 months? [SAS 3, question 4]							
	 If students struggle with the exponential expres 	ssion, ask th	nem to express the amount					
	in the saving's account in month 3 using the rec		-					
	terms of A0. (So, A1 = A0 * 1.01, A2 = A1 * 1.01 * 1.01 * 1.01 * 1.01, etc.)							
	 Remind students of the first savings account op 	tion and as	k:					
	Why does the account with the smaller interest							
	[SAS 3, question 5]	-						
	• Use page 5 to introduce the formula A = P(1 + r))t. [SAS 3 <i>,</i> q	uestion 6] Spend some					
	time making connections between A0 and P. Th	ien make co	onnections for students					

between the exponential function $f(x) = a \cdot bx$ and the compounding interest formula.
Talk about the starting value and the constant multiplier.
 NOTE: represent t is number of times interest rate is compounded instead of number of years
of years
Group work/ Partner work (20 minutes)
Present the problem on page 5. Have students work in pairs or small groups to answer the
questions. [SAS 3, questions 7-10]
Debrief: Show the answers on page 5 for verification
Derive the general formula for compound interest $p\left(1+rac{r}{n} ight)$
Independent Practice (12 minutes):
Re-inforce SAS 3 Question 12 and 13
Debrief and check for 2 minutes
Closure (2 minutes):
• Ask students what is compounding means, what does it mean to compound quarterly,
monthly or yearly and which one is better.
Ask students hat each variable in compound interest represent.
DOL (5 minutes):

	Exponential function
Verbal description	Exponential function is a function in the form of y = ab ^x in which the
	independent variable is the exponent, a is the initial value, and b is a
5.11%	constant
Real Life	Geometric Sequence Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
	Changes in Paramecium over six days period is double from the preceding day.
	100 100
	Increasing the temperature of a cold room by 10% every hour follows a geometric sequence of 60, 66, 73, 80, 88with a common ratio of 1.10
	Infinite Series

II UNIC 3	
	If you invest \$2000 at the start of every year into an account earning 5% interest. Using the compound interest formula, we find that the value of the account at the end of the first 3 years is:
	• Value at End of Year 1 = \$2000 x 1.05 ¹ = \$2100
	• Value at End of Year 2 = \$2000 x 1.05 ¹ + \$2000 x 1.05 ² = \$4305
	 Value at End of Year 3 = \$2000 x 1.05¹ + \$2000 x 1.05² + \$2000 x 1.05³ = \$6620.25
	If you look closely, you'll see that this sequence of expressions for the value of the investment at the end of each year form a mathematical series where each term is the amount of money invested each year—\$2000—multiplied by the interest rate raised to a higher and higher integer power
Function form	Parent Function Where b is the base and x is the exponent
	$f(x) = b^x$ b>0 and b \neq 1
	Transformation
	Parent Function: $y = 2^x$
	Transformed function = $-a(2^{x\pm h}) \pm k$
	+k moves up vertically
	-k moves down vertically
	+ h moves to the right horizontally
	-h moves to the left horizontally
	a>0 vertically stretches
	a< 0 vertically shrinks
	-a reflection over the x axis
Parent function (Graph)	4 3 2 1 -4 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
	$ \begin{array}{c} $

Algebra II Unit 3

Parent function (Table)	$x = 1 - 2^x$
	$x y=2^x$
	-3 $\frac{1}{8}$
	-2 $\frac{1}{4}$
	-1 $\frac{1}{2}$
	0 1
	1 2
Function Characteristics	
	Characteristics ($f(x) = 2^x$)
	Domain: {all real numbers}
	Range: {f(x) f(x) > 0} Zeros: none
	x-intercepts: none
	y-intercepts: (0, 1)
	Asymptote: $y = 0$ End Behavior: As x approaches ∞ , f(x) approaches + ∞ . As x
	approaches - ∞ , f(x) approaches 0.
Geometric Sequence and	Geometric Sequence
Series	Recursive
	$t_n = t_{n-1} \times r^n$
	t_n is the nth term of the sequence
	t_{n-1} is the previous term of the nth term of the sequence r is the common ratio
	n is the term number
	Explicit
	$t_n = t_1 \times r^{n-1}$
	t_n is the nth term of the sequence
	t_1 is the first term
	r is the common ratio
	n - 1 is the 1 less than the term number n is the term number
	Geometric series Infinite Series
	$c = t (1 - r^n)$ $c = a(r^n - 1)$
	$S_n = t_1 \frac{(1-r^n)}{(1-r)}$ $S_n = \frac{a(r^n-1)}{r-1}$
	S_n is the sum of n terms
	a is the initial term <i>r</i> is the common ratio
	r - 1 is the 1 less than the common ratio
	n is the term number

	Logarithmic function
Verbal description	Inverse of the exponential function
Real Life	Inverse Function
	If you wanted to know how many years it will take for your \$2000.00 to double with a 5% interest then you would use logarithm(inverse of exponential) to answer this question for example $4000 = 2000 \times 1.05^{t}$ $2 = 1.05^{t}$
	How many times do you need to multiply 1.05 by itself to get 2? You can take log on both sides to answer this question
	Log2/log1.05 = t
	Homemade chocolate chip cookies can lose their freshness over time. When the cookies are fresh, the taste quality is 1. The taste quality decreases according to the function:
	$f(x) = 0.8^x$, where x represents the number of days since the cookies were baked and $f(x)$ measures the taste quality. When will the cookies taste half as good as when they were fresh?
	$0.5 = 0.8^{x}$ log 0.5 = x log 0.8 x = log 0.5 ÷ log 0.8 x = 3 days
Function form	Inverse exponential function
	$f(x) = b^{p}$ $f^{-1}(x) = \log_{b} f(x) \text{ where b>0 and b \neq 1}$ b base p is the power $f^{-1}(x) \text{ is the inverse function}$ $\int \int $

Parent function (Graph)	-5 -4 -3 -2 -1 0 1 2 3 4 5 $6-1$ -2 -3 -3 -4 f
Parent function (Table)	x $y = \log_2 x$ $\frac{1}{8}$ -3 $\frac{1}{4}$ -2 $\frac{1}{2}$ -1 1 0 2 1 4 2
Function Characteristics	Domain: {x x > 0} Range: {all real numbers} Zeros: x=1 x-intercepts: (1, 0) y-intercepts: none Asymptotes: x = 0 End Behavior: As x approaches m y approaches + m
Change of base	End Behavior: As x approaches ∞ , y approaches $+\infty$. $Log_b x = \frac{Logb}{log x}$
Properties of logarithms	
Definition of natural logarithm	When $e^y = x$ then $Log_e x = y$ or $lnx = y$, where $e \approx 2.71828183$ And $Log_e e = 1$ or lne = 1 because $e^1 = e$

Algebra II Unit 3 PARCC Sample Item

CCSS.MATH.CONTENT.HSA.SSE.B.3.C

Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15' can be rewritten as $(1.15^{1/12})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

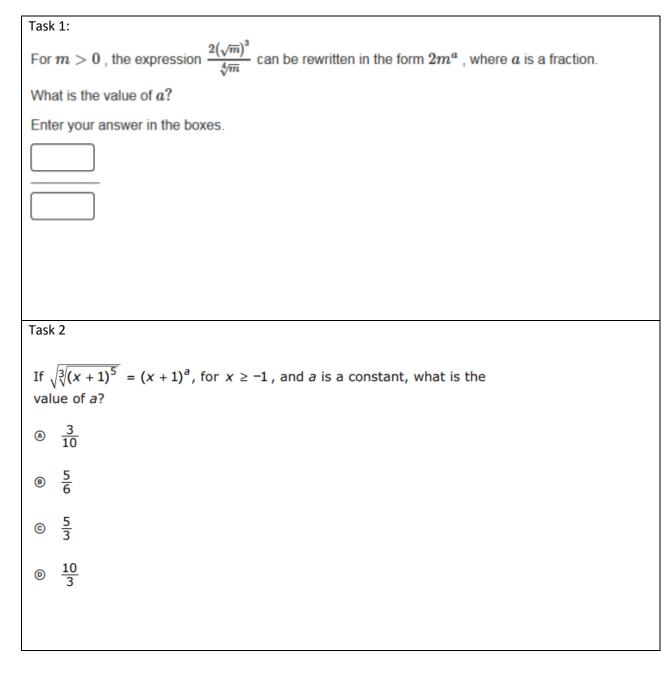
- A bank pays depositors a 2% interest rate compounded semiannually. Let P represent an initial deposit and let t represent the number of years that the deposit is in the bank. The expression $P\left(1+\frac{0.02}{2}\right)^{2t}$ can be used to determine the account balance after t years. Which expression accurately reflects the annual interest rate?
 - \bigcirc A. $P(1.01)^t$
 - \bigcirc B. $P(1.21)^t$
 - \odot C. $P(1.0201)^t$
 - D. P(1.0404)^t

CCSS.MATH.CONTENT.HSF.LE.A.4

For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where *a*, *c*, and *d* are numbers and the base *b* is 2, 10, or *e*; evaluate the logarithm using technology.

$$Log_2 6 \cong 2.6$$

Use this to solve for x in the equation $12 = 8^x$


CCSS.MATH.CONTENT.HSF.BF.B.5

(+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

In the overview you developed function rules that modeled the depreciation of two cars. When will the value of both cars be the same?

Car 1: $20,000(0.92)^t$ Car 2: $12 = 16,000(0.93)^t$ CCSS: N.RN.2

Algebra II Unit 3 CCSS N.RN.2: Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Algebra II Unit 3
Task 3:
Which expression is equivalent to $(\sqrt[3]{27})^4$?
12
© 81 ⁴
$\odot 27^{\frac{3}{4}}$
Task 4:
Rewrite the expression $9\sqrt[5]{27}$ as a power of 3.
Rewrite the expression $9\sqrt{27}$ as a power of 3.
Rewrite the expression $\sqrt[3]{x^2}$ in exponential form.
Which of the following is equivalent to $a^{\frac{1}{2}}b^{\frac{3}{4}}$?
a. $\sqrt{ab^3}$
$b. \sqrt{a^2 b^3}$
<u>c</u> . ∜ <i>ab</i> ³
$\mathbf{d}. \sqrt[4]{\mathbf{a}^2 \mathbf{b}^3}$

Algebra II Unit 3

Task 5:
A company that manufactures memory chips for digital cameras uses the formula
$c=3\sqrt{n}\left(40\sqrt[6]{n}+9\sqrt[4]{n} ight)$ to determine the cost, c , in dollars, for producing n chips. This formula can
be written as $c = 120\sqrt[3]{n^a} + 27\sqrt[4]{n^b}$, where a and b are constants. What are the values of a and b ?
Enter your answers in the boxes.
$a = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Task 6
An expression is given.
(3x)
$\frac{(3x)}{(3x)^{\frac{3}{2}}}$
If $x > 0$, which of the expressions listed is equivalent to the expression given?
Select all that apply.
\square A. $\frac{1}{3x}$
\square B. $\frac{1}{\sqrt{3x}}$
\square C. $\frac{1}{3\sqrt{x}}$
$B. \frac{1}{\sqrt{3x}}$ $C. \frac{1}{3\sqrt{x}}$ $D. (3x)^{\frac{1}{2}}$
$E. (3x)^{-\frac{1}{2}}$
Task 7 Given that $x > 0$, which expression is equivalent to $5\sqrt{xy} + 25\sqrt{x}$?
(a) $5(xy)^{-1} + 25x^{-1}$
(a) $25x^{\frac{1}{2}}(\sqrt{y} + 5)$
$\odot \sqrt{x} \left(25y^{\frac{1}{2}} + 5 \right)$
(b) $5x^{\frac{1}{2}}(y^{\frac{1}{2}}+5)$

Algebra II Unit 3 CCSS: A.SSE2 Use the structure of an expression to identify ways to rewrite it

Task 1:
Which equations are true for all values of x ?
Select all that apply.
A. $3^{2-x} = 3^2 - 3^x$
\square B. $3^{x+2} = 9(3^x)$
\square C. $(3^x)^2 = (3^2)^x$
D. $9^{x+2} = 3^{2x+4}$
\square E. $27^x = (3^x)^3$
Task 2:
Solve the equation $27^x = 9^{x-3}$ for x.

Task 3

Consider the equation $\frac{4^{x^2}}{2^x} = 2$.

4. Part A

Which equation is equivalent to the equation shown?

(a) $2^{x^2} = 2$ (b) $2^{x^2-x} = 2$ (c) $2^{2x} = 2$ (c) $2^{2x^2-x} = 2$ (c) $2^{2x^2-x} = 2$

Part B

Which values are solutions to the equation?

Select **all** that apply.

® −1

- © -<u>1</u>2
- ¹/₂
 ¹
 ²
- © 1

© 2

Algebra II Unit 3

Task 4

Consider the equation $(x^2 + 2xy + y^2)(x + y) = 64$. **Part A** What is the value of x + y? (a) 2 (b) 4 (c) 8 (c) 32 **Part B** If z > 0 and $z^x z^y = 81$, what is the value of z?

Task 5

Consider the expression $3^x - 3^{x-2}$.

Part A

Which is an equivalent form of the given expression?

(a) $3^x - 9(3^x)$

(B) $3^x - 2(3^x)$

```
© 3^{x} - \frac{3^{x}}{2}
```

```
(a) 3^{x} - \frac{3^{x}}{9}
```

Part B

This expression can also be rewritten in the form $a(3^x)$, where a is a constant. What is the value of a?

 ¹₉
 ¹₉
 ¹₂
 ²
 ⁸
 ⁹
 ²
 ⁸
 ⁹
 ³
 ²
 ⁸
 ³
 ²
 ³
 ²
 ³
 ²
 ³
 ²
 ³
 ²

```
Task 6
  If (7^{\frac{1}{4}})^{x} = 7, what is the value of <u>x</u>? Explain your reasoning.
Task 7
The function f(x) = 8^{2x+3} is equivalent to the function f(x) = 2^a b^x,
 where a and b are integers. What are the values of a and b?
Task 8
 Rewrite the function g(x) = 10^4 (2^{3x})(0.1^x) in the form g(x) = n(b)^x,
 where n and b are constants.
```

Task 9:	
Which of the f	ollowing functions is equivalent to $f(x) = 3^{x} \cdot 2^{3x+2}$?
$\underline{a}. f(x) = 2(2)$	24) ^x
$\underline{b}. f(x) = 2(0)$	$5)^{3x^2}$
\underline{c} . $f(x) = 4(x)$	24) [×]
$\underline{d}. f(x) = 4(0)$	$5)^{3x^2}$